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Abstract

Throughout the last few decades, the field of machine learning leaped in advanced automa-
tion and understanding in natural language processing. One of the key limitations for training
for sequential data was that neural network training was not parallelizable. The development in
transformers-based architecture shifted the focus of the field towards language model embed-
dings allowing for better results on down-stream tasks by first being trained in an unsupervised
manner and allowing for parallel training. This change proved to be important as natural lan-
guage tasks can now improve with the help of unstructured text, as opposed to often scarce or
even noisy datasets. By transferring part of the computational graph to a specific task, state of
the art natural language processing models have become available to the public, which reduces
computational time and effectively democratising access to large language models.

At the same time in the particular task of knowledge graph generation, it becomes evident
that high quality datasets without ontologies are difficult to produce as multiple works attempt
to gradually improve them. Therefore, the language model-based approaches are of utmost
relevance for their ability to increase performances with respect to the amount of unstructured
data rather than the currently lacking high quality supervised data.

We hope to define this opportunity in the thesis by investigating the ability of large language
models to generate knowledge graphs. We take a hands-on approach, with methods tested
against established standards. Furthermore, because extracting highly structured graphs from
unstructured text is a difficult process, it is critical to provide tools that can quantitatively as well
as qualitatively analyze the process. We investigate the task of Open Information Extraction,
which aims to transform general text into lists of fact triplets, from both a theoretical and
practical standpoint.

Overall, the models demonstrate an extremely high level of accuracy in learning the struc-
ture and wording of the output triplet fact lists. They also show promising results when fine-
tuned, achieving the highest recall in some configurations. However, when being queried with
few-shot learning, it still appears that the models are performing at baseline levels. As discussed
from a theoretical perspective, evaluating language models against benchmarks can quickly be-
come at risk of subjectivity. The reasons being that meta-physical concept of ’facts’ can have
multiple valid and correct multiple forms in the knowledge graph. Moreover, drawing the line
between objective and subjective text fragments can even difficult for humans evaluators which
is why the numerical evaluation is further enhanced with qualitative analysis.
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Developing a language model to generate knowledge graphs approach becomes valuable
because it can provide extensions and lower labor costs for downstream knowledge graph ap-
plications such as search engine optimizations, allowing for more accountability and clearer
communication.
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Chapter 1

Introduction

The field of machine learning has brought advanced automation and understanding in natural
language processing during the recent decades. Knowledge graphs generated using language
models have the potential to extend multi-relational reasoning capabilities as well as provide
explanations for the outputs of models which are hard to interpret.

In this master thesis, we aim to explore large language models and their abilities to generate
knowledge graphs. We will focus on a practical approach with the methods being tested on
established benchmarks. Moreover, as extracting highly structured graphs from unstructured
text is a difficult process, it is important to provide tools that can analyse the process in both a
quantitative and qualitative aspects. The aim of this thesis is twofold:

To investigate the ability of language models to generate knowledge graphs from unstruc-
tured text, and compare different approaches for doing so.

To develop tools that can be used to analyse and evaluate the quality of the generated
knowledge graphs in a quantitative and qualitative manner.

1.1 Machine Learning in Natural Language Processing

"Natural Language Processing is a theoretically motivated range of computational techniques for
analyzing and representing naturally occurring texts at one or more levels of linguistic analysis
for the purpose of achieving human-like language processing for a range of tasks or applica-
tions." Liddy [2001]

1.2 Knowledge Graphs

Knowledge graphs have been a key component of modern technology in multitude of ways.
Google’s knowledge graph was responsible for finding the correct search result on one-third
of the 100 billion monthly queries in 2016 Goo. Moreover, the utility of knowledge graphs
has been shown in academic works by helping academia create structured relations between
a variety of papers related to the recent pandemic of Covid-19 Dessì et al. [2021] Hope et al.
[2020].

1



2 1.3 Use of Machine Learning in Knowledge Graphs

1.3 Use of Machine Learning in Knowledge Graphs

Knowledge graphs (KG) are a standard data format to organise multi-relational data. However,
with the recent success of transformer-based language models such as GPT-3 and BERT, the
future of KG comes under question. In this research paper, we investigate how these two tech-
nological interact under a practical use case while enforcing a formal procedure using concrete
datasets.

1.4 Research Questions

Throughout our research, we aim to generate knowledge graphs using advanced machine learn-
ing techniques enhanced with large language models.

In this study, we aim to show the potential of unsupervised methods in the task of knowledge
graph creation by comparing hypothetical models to control models.

For this purpose, we compared performance metrics such as F1 scores amongst control
models based on published articles and our novel architectures.

The research firstly focused on how to create generate knowledge graphs from text written
a natural language such as English. Since this is a broad investigation, the research needs to be
broken down into several smaller sub-questions:

1.4.1 Primary Research Goal

- To evaluate the potential of large language models such as GPT-3 and T5 to produce for the
creation of knowledge graphs.

1.4.2 Secondary Research Goal

- To help provide open-source tools to evaluate and debug the process of the aforementioned
task

1.5 Thesis Composition

The thesis organisation follows the following structure:

• Introduction leads the thesis with motivation on the work.

• Related Works takes a look into previous research in the field of the construction of knowl-
edge graphs including datasets, benchmarks, systems, supervised and unsupervised mod-
els.

• Background showcases the relevant information to understand the technical perspective
of the thesis.

• Material and Methods shows the concrete manner in which the experiments are con-
ducted.

• Results demonstrates the valuable metrics and charts derived from the aforementioned
experiments.



3 1.5 Thesis Composition

• Discussion consolidates the thesis in a final chapter to discuss the findings, shortcomings
and potential future directions to follow up this work.
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Chapter 2

Related Works

This chapter primarily focuses on the works that have been used for understanding the task of
the knowledge graphs construction in the age of large language machine learning models.

2.1 Preface to Literature Review

Researching the topic of knowledge graphs construction ties strongly with many similar but
distinctive terms. For instance, the topic can also be referred to as a subset class of knowledge
bases with graphs that are limited to the algorithmic data-structure whereas the super-class of
knowledge bases can include other data structures as well. Due to a wide array of terms used
for similar tasks, the related work section aims to cover the most relevant works for the thesis
despite the evolving terminology through time and expansive literature.

The task of Open Information Extraction (OIE) is also synonymous with Automatic Knowl-
edge Base Construction. The "input is ... a corpus, and its output is a set of extracted relations"
Banko et al. [2007]. The authors state that this technique has advantages over ontology-based
extraction techniques because the relations can also be directly extracted from the text unlike
previously proposed methods.
In a similar fashion relation extraction (RE), deals with the similar idea of extracting relations
in the data-structure of triplets. In the case of RE, whether the entities are pre-specified depends
on the benchmark.

5
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2.2 Algorithmic Non-Learning Approaches

The algorithmic approaches are distinguished due to their ability to predict triplets without
training data. One of the first traces of open information extraction came with the need to
avoid pre-encoding knowledge and ability to apply it across a wide array of text. In the article
presented by Hearst [1992], an initial model is introduced that is based on recognisable lexico-
syntactic patterns.

A decade later, an autonomous system by the name of Baseline KnowItAll was introduced to
extract large collections of facts from the web with preliminary results Etzioni et al. [2004]. Fur-
ther improvements by the author in the pattern learning, subclass extraction and list extraction
created the new model KnowItAll.This method was the first to connect the task of information
extraction with the ability to make it independent of a fixed schema for the knowledge graph
Etzioni et al. [2005].

In 2008, the same group formalised the task of Open Information Extraction to which they
also provided the system called TEXTRUNNER Banko et al. [2007]. In comparison with Know-
ItAll, TEXTRUNNER achieved a 33% reduction in error rate and improved recall of fact extraction
whilst reducing running time.

To contrast to their previous work with shallow models, the group created deeper syntax-
models to increase performance. These models, SRL-IE-UIUC and SRL-IE-Lund focused on se-
mantic role labelling. Although they achieved higher performance, the value of the statistics
based TEXTRUNNER was still essential which why they created a mix between the two models
called the "Smart Union". This ensemble model is the predecessor to OpenIE which is the most
popular system for the task of open information extraction Christensen et al. [2011].
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Another short coming to OpenIE was the interpretation of noun compound phrases which
also contain facts and attributes. RelNoun2.2, a sub-component of OpenIE 5.1 received a major
update which focused on demonyms and compound relational nouns Pal et al. [2016]. To deal
with numerical facts, it was important to introduce a deep syntax model which could reason
information from numbers or quantity-unit phrases. The group introduces BONIE, a model that
bootstraps using deep syntactical patterns to generate numerical relations. Through this switch,
the model increases 1.5x the yield compared to OpenIE and 15 points gain on numerical facts
on the ClueWeb12 dataset. Due to these advantages, BONIE was also merged into the OpenIE
system Saha et al. [2017].

To complete the upgrade to OpenIE 5, CalmIE was appended to the system to increase per-
formances of complex sentences. The group designed the model to reducing the conjunctivity
of the sentences by splitting them into several simpler clauses. Saha et al. [2018]

However, this was not the first presentation of using simpler sentences for the task of OpenIE,
as ClauseIE focused on linguistic traits of clauses in the sentence to perform the task of open
information extraction. ClauseIE depends on parsing sentences into grammatical dependencies
and domain-independent lexica. At the time of its publication, the model achieved between
53.41-59.74 % precision on datasets of the Reverb, Wikipedia, and NYT. Del Corro and Gemulla
[2013]

An issue arising with ClauseIE is the over-specificity of the extracted triplet. A new model,
MinIE attempts to reduce the unnecessary arguments surrounding the entities and relations
while retaining high re-call and precision Gashteovski et al. [2017].
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2.3 Supervised Learning Approaches

One of the first papers outlining the supervised approaches to build knowledge graphs describes
models by treating the problem as a classification of each word in an extraction to be part of
specific arguments Stanovsky et al. [2018]. In this paper the RNN-OIE system uses a bi-LSTM
transducer to predict relations between words in a sentence, by identifying words that can be
syntactic heads of relations, and performing a single labeling to get the extractions.

As a futher iteration to RNN-OIE, the model is upgraded to SpanOIE by treating the data as a
span labelling problem. The model consists of two parts: a predicate module and an argument
module. The predicate module is used to find potential predicate spans in a sentence, while the
argument module is used to classify all possible spans in the sentence as subject or object. The
model provides a confidence score for every extraction. Zhan and Zhao [2020]

The Multi2OIE is a sequence-labeling system that uses a query, key, and value setting inspired
by the Multi-modal Transformer replacing the bi-LSTM used in SpanOIE Ro et al. [2020]. It
follows the pattern to extract relational tuples from a given sentence in two steps. The first step
is to find all predicates in the sentence. The second step is to extract the arguments associated
with each identified predicate.

Connecting back to algorithmic based models, OpenIE6 connects the labelling and sequences
approaches with an iterative labeling-based system Kolluru et al. [2020a]. Iterative Grid Label-
ing (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. The grid’s dimensions
are M × N , M is a pre-defined maximum number of extractions and N is the sentence length.
Moreover, OpenIE6 employs BERT embeddings and is trained on a dataset generated by Ope-
nIE4.

On the other hand, IMOJIE uses an LSTM decoder to generate a tuple one word at a time,
producing < rel > and < ob j > tokens to indicate the start of relation and object Kolluru
et al. [2020b]. The generated extractions are concatenated with the original input sentence
and passed back through IMOJIE to generate the next extraction. This process is repeated until
the < EndO f Ex t ract ions > token is generated.

In terms of domain specific knowledge graph generation, Dessì et al. [2020] have performed
extensive research on implementing methods and creating datasets with methodologies to anal-
yse the accuracy, recall and F1 scores of models using a "gold standard" in the topics of scientific
paper.
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2.4 Unsupervised Learning Approaches

2.4.1 Language Models

In 2017, a new network architecture coined the transformer achieves state of the art perfor-
mance without the need of convolution or recurrence by using the attention method. This
advance led to the production of more capable models as now these networks can be trained in
a more parallelizable manner as opposed to recurrent neural networks Vaswani et al. [2017].

Generative Pre-Training

Using this architecture, a new version of embeddings is also implemented using unlabeled text
from 7’000 unpublished books. A particular type of these embeddings, coined generative pre-
training (GPT) shows to be of great use to out-perform state of the art in specific natural lan-
guage processing tasks such as natural question answering and common sense reasoning, se-
mantic similarity, language inference and classification Radford et al. [2018].

By transferring more of the generatively pre-trained layers, the task-specific performance
also experiences gradual increase after supervised fine-tuning. Moreover, it shows zero-shot
behavior, which implies that the model can adapt to its dataset with only a forward pass rather
than demanding additional architecture modifications or specific datasets.

Another iteration of the generative pre-training model is published which demonstrates
much stronger zero-shot behavior due to its larger size. GPT-2 contains 1.5 billion parameters
and is trained on 40 GB of text from the WebText dataset Radford et al. [2019].

GPT-3 set of models are trained on a weighted mix of 300 billion tokens including a dataset
with a trillion words stored in 45TB of data. The largest of the models, GPT-3 contains a whole
175.0 billion parameters and achieves extremely strong performances in natural language pro-
cessing tasks without fine-tuning, demonstrating zero-shot behaviour Brown et al. [2020].

Bidirectional Encoder Representations from Transformers

In another case, the model of BERT, Bidirectional Encoder Representations from Transformers is
trained by both conditioning the left and right context. The BERT model is trained on BooksCor-
pus and Wikipedia which totals up to 3,3 billion words. By concatenating one additional layer
to the pre-trained BERT model, it is possible to achieve state of the art performance in a wide
array of natural processing language tasks. Devlin et al. [2018].

A further iteration of BERT, RoBERTa, has optimised the methods for training language mod-
els and achieved higher performance. By adjusting to larger batches, adapting the the sentence
objective, creating longer text sequences, and dynamically changing the masking pattern dur-
ing training, RoBERTA achieves state-of-the-art results on SQuAD and RACE datasets. Liu et al.
[2019]

The advance in language models has also enabled a strong advantage in data augmentation,
the task related to increasing training data Papanikolaou and Pierleoni [2020]. In combination
with both BERT and GPT-2, the data augmented relation extraction model DARE has enabled
for the ability to increase training data in the relation extraction which is similar to the open
information extraction task.
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Text-to-Text Transformer Transformer

Using the encoder-decoder, Text-to-Text Transformer Transformer(T5) aims to create a more
effective pre-trained language model to fine-tune on NLP downstream tasks. To optimise the
procedure of language models, T5 evaluates transfer learning performance using various con-
figurations such as different objective function, architectures, datasets, transfer approaches
and other configurations. This methodology enables the achievement state-of-the-art on many
downstream NLP benchmarks. The group discovers methods to reduce to the computational
cost by drawing conclusions on experiments that language models architecture can achieve sim-
ilar performance to task-specific architectures. Moreover, that the most efficient configurations
share encoder-decoder weights and the objective function should be that of denoising further
helps efficiency.

Regarding the size of the model and dataset, training on large and diverse text benefits is
important and the method could reach the size of 11 billion models which is the largest at the
time of publication. Finally, it is becoming apparent that unsupervised pre-training is starting
to produce comparable results to fine-tuning after pre-training and the ensemble models can
outperform individual models Raffel et al. [2019].
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2.4.2 Knowledge Graph Generation Models

Contrasted to supervised methods, the unsupervised methods aim to generate knowledge graphs
without the use of labels but by using unstructured text directly. The benefit of these approaches
is that the learning capabilities are increased with the quantity of abundant unstructured text
rather than scarce structured datasets.

Match and Mapping

In this method, the authors show that the knowledge graphs information is found in language
models through their ability to learn general facts Wang et al. [2021b]. The algorithm consti-
tutes of two stages. The first aims to generate candidate facts by implementing a modified beam
search across the weights of attention matrix. The secondary stage re-integrates the likely facts
into the knowledge graph found in a pre-existing knowledge graph.

Zero-shot translation

Contrasted to previous methods, a new formulation of the task was created by viewing the
knowledge graph construction problem as a text-to-triple translation framework Wang et al.
[2021a]. The paper combines three different datasets types, open information extraction, rela-
tion classification and knowledge probe. Therefore, they are introducing a new type of model
called the DeepEx. The model uses this framework to create knowledge graph in two stages:
"Generating" and "Matching".

The first stage is generation which helps find candidate sequence of tokens for noun phrase
pairs. The stage does finds the sequence of tokens by creating beam-search across the attention
scores which are part of the transformer architecture. The k-best scores are then elected to
proceed to the following stage.

In the second stage of ranking, the scores are compared to the sentences using a trained
model which employs language model embeddings. The model is tasked with minimising the
loss between the ideal candidate and maximising it with the incorrect candidates.
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2.5 Evaluations and Datasets of Knowledge Graph Constructions

2.5.1 Datasets

OpenIE Datasets

The Open Information Task was introduced to the literature as a first paradigm which does
not require manual annotations to automatically generate knowledge graphs. The motivation
behind moving away from traditional IE datasets which contain fixed classes is that the quality
of the models scales linearly with manual input . Banko et al. [2007]

During advances in machine learning, labelled datasets with golden triplets were intro-
duced. Stanvosky et al. developed a large scale dataset and performance evaluation for open
information extraction called "OIE2016” Stanovsky and Dagan [2016].

From another perspective, the Wire57 focuses on the quality of annotations by implement-
ing annotation guidelines Léchelle et al. [2018] . Moreover, the evaluation script is publicly
available. The functions return the evaluation metrics across the complete dataset composed
of 57 sentences associated with 343 extracted triplets.

Using the same source sentences as in OIE2016, a more accurate and standardised an-
notation, Crowd automatic open Relation extraction Benchmark (CarB) was enabled through
platforms such as Amazon Turk. The authors, who are also major contributors to the OpenIE
system, mentioned that the previous datasets have been too small or lacked standardisation.
Bhardwaj et al. [2019].
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Supervised OpenIE Datasets

With the growing influence of machine learning in the field of data analysis, the first dataset
enabling supervised learning approaches was generated. Moreover, the conversion to machine
learning framework is non trivial due to the generative and subjective aspects of knowledge
graph generation. Stanovsky et al. introduce a variant of “OIE2016” based on sequences
Stanovsky et al. [2018]. The novelty in this work in viewing the problem as a sequence tagging
problem allowed for systems to learn from data rather than rule specific algorithms. Moreover,
with matching evaluation functions the framework allowed for more efficient validations.

In a similar approach, a further iteration of “OIE2016” nicknamed “Re-OIE2016”, Zhan et
al. Zhan and Zhao [2020] improved the dataset in both the training and evaluating splits. In
the training part, the authors expanded the volume using bootstrapping techniques including
lower confidence triplet lists. From the evaluation side, they accurately re-annotated the test
split of the dataset. Moreover, in the complete dataset, they added additional indices to be able
to frame the task as a sequence to sequence problem.

In a similar approach to how the original “OIE2016” was transformed from “QA-SRL” dataset,
the large scale open information extraction benchmark, “LSIOE” derived its facts from “QA-
SRL2” Solawetz and Larson [2021]. Additionally, the authors contributed additional conversion
heuristics to ensure data quality. With a larger source, the dataset reached a 10-fold volume
compared to its largest predecessor “OPEIC.”

The latter dataset focused on extracting a list of triplets using an algorithm based approach.
The source text is given by Wikipedia articles and then compared to already established knowl-
edge graph datasets such as DBPedia and YAGO. Moreover, due to the computer-based extrac-
tion, this dataset has over 341 millions of triplets. Due to such a large amount, the dataset
is further sub-divided into “OPIEC-Clean” and “OPIEC-Linked” sub-corpora. The clean retains
triplets between entities and concepts and the linked dataset retains only entities which have
Wikipedia articles linked.

Figure 2.1. Diagram showing the evolution of open information extraction datasets

As a further comment to the state of datasets in the Open Information Extraction Field,
BenchIE aims to increase the completeness of benchmarks Gashteovski et al. [2021]. To do so,
BenchIE focuses on being fact-based and lists exhaustively all fact synsets related to a given a
sentence. This approach permits for the evaluation of other aspects such as compactness and
minimality.

In addition to datasets, additional tools such as annotators have also been introduced. AnnIE
is an interactive web based application that helps manually label triplets from unstructured text
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Friedrich et al. [2021]. In their work, the authors also introduce two datasets composed of 150
sentences sourced from "NYT10k" dataset which is formed with random sentences from New
York Times articles. The first dataset is a subset with the focus on triplets containing named
entity and the second one based on verb-mediated relations.



Chapter 3

Background

3.1 Natural Language Processing

It is an area of focus in artificial intelligence which addresses the subject of processing natural
languages such as Italian, English used for human communication.

In computer science, a series of of natural language characters is denoted as a string. To
analyse the string, it needs to be further divided into tokens which can be encoded either on
the character, word or morphemes level.

In this paper, we will use the following notation for word encoding:

• Words: w ∈W

3.1.1 Spanning a wide of array of subjects

The field is difficult as it crosses many areas of research departments such as communications,
philosophy, psychology, culture, and languages. Specifically knowledge graphs deal with the
notion of ontologies which is a science in philosophy aiming to describe "the kinds and struc-
tures of objects, properties, events, processes and relations in every area of reality" Floridi and
Smith [2004]. As stated in Smith’s work, Ontologies do not seek not "predication, but rather
taxonomy." In the following section, we will explore the current implementations of open infor-
mation extraction’s approaches to derive facts from text.

15
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3.2 Knowledge Graphs

3.2.1 Forms of knowledge graphs

A knowledge graph or base is a type of data structure which aims to contain valuable informa-
tion. In computer science, traditional graphs are defined as a set of vertices and edges. Vertices
are connected via edges which allows for advanced representations of various systems. Their
mathematical notations are:

• Edges: e ∈ E

• Vertices: v ∈ V

The two main forms of representations of graphs are adjacency matrices or adjacency lists.
Matrices are not necessarily superior to the list and vice versa. Each has its advantages when it
comes to specific computational tasks.

For instance, retrieving a specific edge takes O(1) time steps in the matrix form of graphs,
but O(log(|E|)) time steps in list form. This means querying specific edges is a lot less compu-
tational expensive, but it comes with more space allocation.

Knowledge graphs are a specific form of directed graphs in which the vertices and edges are
respectively called “entities” and “relations”. This type of graph has a feature that the edges/
relations can be of different types. Moreover, because it is a directed graph the vertices could be
denoted as “heads” or “tails”, with respect to a given relation. Formally speaking, the knowledge
graph data notations are:

• Entities: e ∈ L

• Relations: ri ∈ R

• Tails: t j ∈ T ⊆ L

• Heads: hk ∈ H ⊆ L

To store a knowledge graph, it is common practice to employ the list form of graph storage
because it is more efficient with respect to memory. The data is composed of a list of triplets in
the following format:

[(h1, r1, t1), (h2, r2, t2), ..., (hn, rn, tn)].

Furthermore, the entities and relations names tend to be converted to index values with
a separate dictionary to reduce the data size. This is important because some of the largest
datasets include millions of triplets with millions of different types of relations and entities. On
this scale of large data, it would be ineffective to store the data in standard tensor form. The
knowledge graph in tensor format, T has the dimension of R× T ×H. Unlike traditional graphs
which can be transformed into a matrix (tensor of order 2), knowledge graphs are of order 3
due to the relation having an additional label.
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Figure 3.1. Knowledge graph adjacency tensor with the respective dimensions of head, tail
and relation

Converting the knowledge graph from a list structure into a tensor format has disadvantages
that it tends to be a sparse tensor, but it enables it to be included in certain types of operations
where a fast retrieval of values is also necessary. In certain cases of automatic knowledge graph
construction such as open information extraction, the entities are not standardised which proves
this storage format to be difficult to handle as it requires additional post-processing to cluster
entities to improve quality of the data structure.
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3.3 Non-triviality of Evaluating Knowledge Graph Generation

Although a knowledge graph is extremely versatile to contain relevant information in form of
facts, evaluating its quality proves to be a task of its own. In this section we aim to investigate
why it is not clear whether the generated knowledge graph is of high quality or not.

Contrasted to standard machine learning tasks, where we can tell with extreme certainty
whether the picture is a cat or dog, it becomes evident that giving a number for accuracy and
recall has to be further researched in the task of knowledge graph creation.

Knowledge graphs expressed a list of triplets containing three arguments (head, relation,
tail), help bridge the reasoning between humans whilst remaining useful to computer. As a
trade-off to this level of expressiveness, the data structure can have infinite permutations in its
instances, knowing which one is the ideal and objective knowledge graph (if there is one) is not
trivial. Therefore, there are no obvious target labels in general so machine learning evaluation
techniques need to adapt.

Figure 3.2. Diagram depicting the evaluation and ideal standard for a knowledge graph
remains unclear
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To start answering the question of evaluation, current academia suggests that we need to
undertake several constraining assumption.

Assumption 1: Extracted triplets shared the vocabulary with the source text

In the task of open information extraction, we aim to formally facilitate "domain-independent
discovery of relations extracted from text" Banko et al. [2007]. Despite the fact that there is
no theoretically "pre-specified domain or vocabulary" Christensen et al. [2011], the practical
implementation of knowledge graphs requires a given vocabulary to express them.

• Vocabulary: w ∈ V

• Knowledge Graph Vocabulary: w ∈ Vkg

• Source Text Vocabulary: w ∈ Vtex t

• Application Base Vocabulary: w ∈ Vapplicat ion

From an applied perspective, works in literature aim to generate triplets in which the argu-
ments are subsets of words from the source text. In other words, to simplify the evaluation and
task, the extractions only contain sequences of words found in the original text limiting the vo-
cabulary of the knowledge graph. In the original supervised open information extraction work,
the authors refer to a similar idea as ’assertedness’ which refers to the fact that the phrases are
parts of the original sentence although it may appear to be more direct to include them in other
ways. Stanovsky et al. [2018]. Thus, in current evaluations Vkg = Vtex t .
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For example in RE-OIE2016 Zhan and Zhao [2020], we notice the following sentence - triplet
match:

Sentence: "There were 143 households out of which 30.1 % had children under the age of 18

living with them , 49.7 % were married couples living together , 11.9 % had a female house-

holder with no husband present , and 36.4 % were non-families ."

Triplets: ["30.1 %", "had", "children under the age of 18 living with them"]

Although a fact can be also phrased using alternate to symbolise similar sense, deviating
from the source text vocabulary increases the difficulty of the task. In future work, it would be
of value to generate datasets with a given vocabulary in mind which could have practical task
in the downstream tasks for which Vkg 6= Vtex t , but rather Vkg = Vapplicat ion. As an example, the
vocabulary of words could be used to appeal to targeted audience to help communicate with
more clarity while also providing useful analysable information.
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Assumption 2: Human manual annotations can extract correct facts:

To evaluate knowledge graphs, human input has always been crucial to output a performance
metrics although it is difficult to maintain objectivity. In the case of one of the original system
TEXTRUNNER Banko et al. [2007], evaluators directly assessed the accuracy based on human
input of a subset of facts which provides them with a final metric.

Figure 3.3. Diagram depicting an evaluation that depends on approximated ideal knowledge
graph manually labeled by human annotators

Then in the case of supervised open information Stanovsky and Dagan [2016], a fully auto-
matic evaluator has been created given a set of ideal triplets for each sentence, often referred
to as gold triplets OIE2016. In this case, the set of ideal annotations is provided with manual
annotation

In a similar way, the authors of BenchIE Gashteovski et al. [2021] create a template based
knowledge graph annotation which are clustered by semantic meaning. In this advancement,
although manual labor is provided by humans, the templates adapt to accept valid facts devi-
ating from the gold triplets.

Due to many factors, annotations are vulnerable to subjectivity when choosing to include a
certain word or fact. Since objectivity is crucial in science, authors have attempted to increase
it by providing guidelines to annotators.
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3.4 Data Structure

In the face of the scientific formal definition of the knowledge graph, the implementations
diverged in multiple forms. Moreover, in some works, the predicted knowledge graph and the
annotation have different formats. These data structures and formats are essential because they
are dependencies for the evaluation algorithms which help produce metrics on the quality of
the generation and explain how good an approach is for the construction of knowledge graphs.

3.4.1 Thesis Standard

To connect the various knowledge graph implementation files, a series of script called convert-
ers are being used. This proves to be useful as it allows to transform the dataset between the
different implementations. The main data-structure with respect of this thesis is the thesis stan-
dard implementation. The utility is two fold, it provides a unifying class to simplify conversions
and enables for the usage in this project such as visualisations.

Figure 3.4. The converter scripts help the knowledge graph to be transformed into various
formats from outputs to evaluators. The thesis standard minimises the number of converters
need by being a ’format hub’

In this case, we symbolise the knowledge graph as a dictionary of two arrays. One of them
containing the sentences and the other one the list of triplets. The association between the
sentences and list of triplets is based on the index as can be seen below:

{

’text’: ["Switzerland’s national languages are French, Romansh, Italian, and German. The

largest city of Switzerland is Zürich."]

’labels’: [[(Switzerland, national languages, French),

(Switzerland, largest city, Zürich)...], ...]

}
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3.4.2 Supervised OIE

In this original data-structure for supervised learning OIE2016 Stanovsky and Dagan [2016], the
authors created variable names to denominate tails, heads and relations due to the predeceasing
dataset structures with the following labels:

• head: A0 for ‘argument 0’

• relation: P for ‘predicate’

• tails: A1... An for ‘argument 1. . . argument n’

Each extraction is associated with a table in which there is a unique head and relation but
may contain multiple tails. Furthermore, this data-structure occupies more space than necessary
and limits words to be only part of one tail per head-relation pair and can not contain certain
edge cases. To indicate the beginning and continuous inclusion of an argument in terms of
words, the labels B and I are post-pended to the label.

Figure 3.5. The tabular format of knowledge graph showing tables with associated labels
for each extraction



24 3.4 Data Structure

3.4.3 Re-OIE2016

As a second iteration to the supervised open information extraction, the authors re-labeled the
dataset to transform it into Re-OIE2016 which is formatted as a JSON object Pezoa et al. [2016].
The keys are the sentences and the values are arrays of JSON objects representing extractions.

"A Democrat , he became the youngest mayor in Pittsburgh ’s history...": [

{

"arg0": "he",

"arg0_index": [3, 3],

"pred": "became",

"pred_index": [4, 4],

"arg1": "the youngest mayor in Pittsburgh ’s history",

"arg1_index": [5, 11],

"arg2": "at the age of 26",

"arg2_index": [15, 19],

"arg3": "",

"arg3_index": [],

"loc": "",

"loc_index": [],

"temp": "in September 2006",

"temp_index": [12, 14],

"context": "",

"context_index": []

}
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3.4.4 BenchIE

In the case of BenchIE, the annotation and prediction formats are quite different. As the authors
’exhaustively list all acceptable surface forms of the same fact’ Gashteovski et al. [2021] by
creating clusters for each underlying fact, each cluster represents a different underlying fact. In
the following annotation format, the words in square brackets represent optional terms:

sent_id:1 He served as the first Prime Minister of Australia and became a founding...

1--> Cluster 1:

He --> served as --> [the] [first] Prime Minister [of Australia]

He --> served --> as [the] [first] Prime Minister [of Australia]

In the predicted format, it is a tabular separated values file with the first column relating to
the sentence id, the second entry as the head, the third as the relation and finally the fourth as
the tail as such:

1 He served as the first Prime Minister of Australia
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3.5 Machine Learning Tasks

3.5.1 Classification

Target variables can either be considered as quantitative or qualitative. A particular case of
qualitative data is classification. Typically, for problems where each observation can be associ-
ated with one class only, the data is converted into a one-hot encoded vector. The magnitude of
this vector is the number of total classes with all entries equaling to 0 apart from the assigned
actual class which is equal to 1.

3.5.2 Translation

As natural language processing touches many fields, there are many uncertainties. For instance,
the representation of knowledge facts which can have many representations in textual form.
This is why the problem of knowledge graph construction should be viewed as a translation
problem. Knowledge graphs can be inconsistent as they remain under the influence of the

natural language and it would be evident to see that they can form their own form of language
as well. If this language remains too unspecific, then it will be difficult to build consistent and
accountable data. However, if the language has a narrow domain on what can be represented
then the expressive capabilities of the knowledge are restricted.
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3.6 Transformers

3.6.1 Block

The transformer block is a new simple network sub-component which is based solely on atten-
tion mechanisms that do not require recurrence or convolutions. Experiments show that this
model outperforms previous models in terms of quality, while being more parallelizable and
requiring less time to train. To achieve these capabilities, the encoder and decoder each have
six layers. The first sub-layer in each layer is a multi-head self-attention mechanism, and the
second is a simple position-wise fully connected feed-forward network. The decoder addition-
ally has a third sub-layer which performs multi-head attention over the output of the encoder
stack. Vaswani et al. [2017]

3.6.2 Attention Function

Attention is a mechanism used by transformers to focus on specific parts of the input when
producing the output. This is done by weighting the importance of each part of the input ac-
cording to an attention function, which is computed using the query vector and the key vectors.
The output is then computed as a weighted sum of the values, with each value being weighted
according to its compatibility with the query. Specifically, we can differentiate between two
categories of attention.

Scaled Dot-Product Attention

Similar to the function of the dot-product attention introduced in Luong et al. [2015], the scaled
variation is presented as such:

AttentionFunction(Q, K , V ) = softmax

�

QK T

p

dk

�

V

where Q is the set of queries, K is the keys and V is the values in the shape of a matrix. Thus
dk is the dimension of the keys. Moreover, contrasted to the previous iteration of this function,
the "scaled dot-product attention" computes the attention weights for a set of queries, keys and
values. It is similar to the dot-product attention function, except that it scales the dot products
by 1p

dk
. This helps to counteract the effect of large dot products pushing the softmax into

regions where it has small gradients which could help reduce errors in the back-propagation.
Vaswani et al. [2017]

Multi-Head Attention

Rather than limiting the function to a single attention head, the authors found it beneficial to
linearly project the queries, keys and values h times with various learned linear projections. It
allows to perform the attention function in parallel to produce values in the output. These are
concatenated and once again projected, resulting in the final valuesVaswani et al. [2017].

MultiHeadAttention(Q, K , V ) = Concatenation (head1, . . . headh)W
O

where head ii = Attention Function
�
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i

�

in which the projection matrices pa-
rameters are: WQ

i ∈ R
dmadel ×dk , W K

i ∈ R
dmode ×dk , W V

i ∈ R
dmatel ×dv and W O ∈ Rhdv×dmadel .
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3.6.3 Language Models

Large language models have shown that large gains can be made on various tasks dealing with
natural languages by first generatively pre-training on a diverse corpus of text without annota-
tions and then using discriminative fine tuning on a narrow task. To achieve effective transfer
while requiring minimal changes to the model architecture, the proposed approach employs
task-aware input transformations during fine-tuning. This is shown to outperform discrimina-
tively trained models that use architectures tailored to each task, significantly outperforming
the state of the art Radford et al. [2019].

Generational Pre-Training

To pre-train a standard language modeling objective to maximize the following likelihood given
an unsupervised corpus of tokens (sub-components of words): (U = {u1, . . . , un}):

L1(U ) =
∑

i

log P (ui | ui−k, . . . , ui−1;Θ)

in which P is models the conditional probability employing transformer based neural network
with Θ, its parameters and k being the context window associated with a given input. Radford
et al. [2018]
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3.6.4 Fine-Tuning Models

When training a machine learning model for natural language processing (NLP), the model must
generally handle text in such a way that downstream learning is possible. Thus, following the
pre-training, the language model can now be effectively trained on a downstream discriminative
task. Employing a supervised dataset where the input sequence is [x1, ..., xm] and the matching
output is y . The inputs are first passed through the transformer blocks and then finally added
to the linear output layer Wy to predict the next token:

P
�

y | x1, . . . , xm
�

= softmax
�

hm
l Wy

�

.

Following the objective function to be maximised:

L2(C ) =
∑

(x ,y)

log P
�

y | x1, . . . , xm
�

Variations of this fine-tuning approach can also be adapted to further increase performance.

Zero, One, Few Shots Approaches

Fine-tuning, few-shot learning, one-shot learning, and zero-shot learning are the four main
methods for prompting or training a large language model on task-specific data. The most
common approach is fine-tuning, which involves updating the weights of a pre-trained model
by training on a dataset specific to the desired task. This can lead to strong performance on
many benchmarks, but it has some drawbacks, such as the possibility of poor generalization
out-of-distribution or overfitting to spurious features of the training data. Few shot learning is
when the model is given a few demonstrations of the task as conditioning at inference time, but
no weight updates are permitted. Contrasted with one shot learning is defined as to when only
one demonstration is allowed in the context window. Zero shot learning on the other hand can
not contain demonstrations and the model is only given a natural language guidelines. Brown
et al. [2020]
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Text-to-Text Paradigm

In this paradigm, the problems are guided by the central concept of approaching any text pro-
cessing problem as a "text-to-text" problem, in which text is entered and new text is output
Raffel et al. [2019]. The core benefit lies in that text-to-text architecture allows us to use the
same parameters, decoding mechanism, training approach, and loss function to any task we
consider.

Researchers make use of this adaptability by evaluating performance on a variety of NLP
tasks, including question answering, sentiment categorization, document summarization, and
now in our work knowledge graph generation.

Sizes and Performance of Models

Figure 3.6. Number of parameters in each language model. Scale is not linear for visuali-
sation purposes.

There are three main families of language models which are differentiated by their archi-
tectures, training methods and authors. As described in the section of related works.



Chapter 4

Material and Methods

In our study, we aim to use three categories of methods that enable the creation of knowledge
graphs; Non-learning approaches (Algorithmic), supervised and unsupervised methods on the
BenchIE dataset. The experimental models can be found in the directory, the results in the
evaluators directory on the thesis repository.

4.1 Study Plan

We will evaluate performance on the task of knowledge graph creation using various machine
learning methods: an algorithmic baseline, supervised, unsupervised (few-shot). In order to
avoid additional computation and at the same time increase performance, pre-trained language
models are employed. Experimental models will include the large language model translation
using gpt3 Brown et al. [2020] , and text-to-text transformer T5 Raffel et al. [2019]. For valida-
tion purposes, we will use of the a learning baseline system OpenIE 6 Kolluru et al. [2020a], an
algorithmic approach MinIE Gashteovski et al. [2017], and a highly performant system ClauseIE
Del Corro and Gemulla [2013].

4.1.1 Hardware Requirements

To increase the execution speed of the experiments, the neural network trainings and evaluation
sessions are implemented using graphics processing units (GPU). In our study, we used NVIDIA
T4 TENSOR CORE GPU with 16 GB of memory from Google Research col.
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4.2 Experimental Models

Sub-component of Models: Language and Learning Models

Sub-component of Models: To prompt the models with the correct textual syntax and then to
retrieve the answer from the text, a series of parsing function needed to be implemented.

Pre-Processor:

The concept of few-shot demonstrates that large language models can use the contextual in-
formation to do predictions rather than requiring the update of weights to specific datasets.
In our case, we will be giving examples of sentences followed by facts for the language model
to fill its context window. Then, we query the fact based on the last sentence inserted in the
context window. For example, the query to the model should follow the format of n examples
of sentence-fact pairs:

In the sentence: Bern is the capital of Switzerland

The facts are: (Bern, Capital, Switzerland)

In the sentence: Alphabet is a company headquartered in Mountain View

The facts are: (Alphabet, is a, company), (Alphabet, headquartered, Mountain View)

...

In the sentence: <the sentence to extract facts from>
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In general, the better the problem is described in human-like terms, the easier it will be
for the large language model to evaluate the performance. Previous to this format, we tried
the prefix "Q:", "sentence:" and "A:", "Facts:" for the sentence and triplet list respectively. After
running the experiment with syntactically variations, we reported the results for the one that
had the best syntax tuning which is the phrasing described above. Moreover, to avoid producing
an empty string, a method that was effective was to exclude the last fact prefix prompt "The
facts are:". Although it is unclear why the number of valid pairs increased with the exclusion of
the final prompt, we hypothesise that the beam search algorithm is affected by the last phrase.
As a result, the pre-processing requires four additional text variables to predict beyond the
traditional systems. For a practical approach, we used “In the sentence:”, “The facts are”, “),(”
and “„” as sentence prefix, triplet list prefix, fact separation token and argument separation
token respectively. When the context window is built, it is important to ensure that the model
does not exceed the maximum length which can be further asserted with a custom function.

Post-Processors:

For the scope of this thesis, a custom parser is implemented to produce a list of triplets associated
with a given sentence by performing a string split among the fact separation and argument
separation tokens. As an additional feature, the parser records the number of valid and invalid
pairs to generate metrics. In a similar fashion the second step ensures that the words of the fact
are present in the sentence. Finally, it outputs the resulting knowledge graph into the thesis
standard format.

4.2.1 GPT-3 with Syntax Querying: Few-shot

Learning Parameters

Learning Parameters Unlike traditional models, this one does not require fine-tuning on the
specific dataset as it aims to be a universal text predictor. The series of GPT models have been
trained to predict the next logical continuation of the text. GPT-3 is a necessary model for
comparison as it represents state of the art in natural language processing with its ability to
create few-shot behaviours

Predicting Triplets

To run the model, we used OpenAI application point interface while ensuring that the connec-
tion does not fail between the local host and their servers. Moreover, to evaluate the perfor-
mance, it is contextualised once with data from BenchIE benchmark and once with Re-OIE2016
data.

Implementation

The hyper-parameters used to run this model were temperature of 0.95, maximum length of
359, top-p of 1, frequency penalty 0, and presence penalty of 0, number of runs of 3, on the
tex t − davinci − 002 engine on the API with a stop break of two new line characters (). From
a formal perspective, when displaying the number of runs we create the union of multiple of
inferences.
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Figure 4.1. Large language model pipeline for text to text knowledge graph generation,
GPT-3 demonstrating few-shot behaviour

4.2.2 Text to Text Language Model Translation T5: Fine-Tuning

Learning Parameters

A practical approach to solving the task of knowledge graph generation would be to view it
as text-to-text model. By using T5-Base to fine-tune on the new text-to-text knowledge graph
construction dataset Raffel et al. [2019], we are able to view it as a translation problem. The
benefit of this approach lies in the fact that the generation process most likely generalises better
as there is the possibility for variable length output.

Predicting Triplets

When predicting the tokens there is a unique tokens beyond the natural language vocabulary.
The separation tokens of the triplet list is represented using the < SEPARAT ION − TOKEN >
token which in our case we used ′, ,′.

Implementation

The T5-Base is fine-tuned with the previously mentioned custom dataset for 40 epochs using
a python library Roy. Moreover, the prediction returned a variable number of outputs (3 or 4
depending on the dataset). The beam search used the following parameters number of beam
of 5, top p of 1, top k of 50 and a repetition penalty of 1.5.
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Figure 4.2. Adjacency tensor and the respective dimensions

4.3 Evaluation Methodology

4.3.1 Parsing the outputs

A custom parser is implemented to retrieve the triplet list from the unstructured prediction text
converting it back into an array of triplets with text arguments. If there are issues with the
syntax of the output, then the parser considers the prediction as invalid.

4.3.2 Evaluation Methodology

Metrics

We evaluated the performance of our model using key metrics which have been modified to
the task of text-to-text knowledge graph construction. In the stage of the post-processing of
the model’s output, we look at how well the model can generate structured predictions which
is defined as the syntax accuracy. Then in the task of open information extraction since the
vocabulary of the prediction must be equal to Vpredic t ion = Vsentence, then an additional accuracy
is implemented on the triplet level called the in sentence accuracy. Finally, to compare across
different models, we use precision, recall, and f1 as defined in the BenchIE evaluator section in
the Background Chapter 2. Furthermore, some traditional natural language processing metrics
were excluded for instance the character level precision is not truly relevant as there are many
permutations of the correct answers.

4.3.3 BenchIE Benchmark

The dataset is composed of 300 sentences, with 1350 clusters and 9049 possible template per-
mutations that are acceptable into the evaluation algorithm Gashteovski et al. [2021]. More-
over, the outputs are stored as JSON files in the repository. In our evaluations, we will be using
the BenchIE format. The benchmark model outputs has a the structure of one extraction per
line:

SENTENCEID HEAD RELATION TAIL
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When we train the model using the inputs, we perform a 85% train - 15% test split on the
data. Therefore on the BenchIE benchmark, we split the dataset into 260 sentences for training
and 40 sentences for testing. The training set is used to train the model and the test set is used
to evaluate the performance of the model on the benchmark whilst ensuring no overlap.



Chapter 5

Results

In this chapter , we review the results from generating knowledge graphs using large language
models of GPT3 Brown et al. [2020] and T5 Raffel et al. [2019] employing different training
methods such as few-shot learning as well as fine-tuning. In details, the following chapter is
divided into five sub-divisions. The first two sections include specific results and optimisations
and configurations for each of the two tested language models.

Then, we introduce the visualiser, a dashboard to enable qualitative analysis of sentence
knowledge graph data. Finally, we create two qualitative studies to understand the perfor-
mance of the results beyond the numeric limitations of evaluation algorithms. Thus providing
deeper insights into the task of knowledge graph generation using advanced machine learning
techniques.

Finally, the last section contextualises and clusters the results of the thesis with other works
in the field such as ClausIE Del Corro and Gemulla [2013].

37
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5.1 GPT-3: Evaluation

As stated in the previous chapter about materials and methods, in our experiments GPT-3 is
executed with two different configurations. The first one GPT-3(c=Re) has its context filled
with the RE-OIE2016 dataset whilst the second one has it with a subset of BenchIE GPT-3(c=Be).
However, both models are evaluated on the same benchmark although the one with the BenchIE
excludes the phrases used in the context to have a more accurate measure for generalisability
Gashteovski et al. [2021].

5.1.1 Configuration 1: Input Context with Re-OIE2016

Figure 5.1. Chart depicting GPT-3’s performance on the BenchIE benchmark. The key
metrics include precision, recall and f1 across the dimensions of aggregated runs.

The model achieves peaks in precision at 0.26, in recall at 0.24 and in f1 at 0.21. The
model’s performance in terms of recall tends to increase with the dimensions of aggregated
runs, whereas the precision decreases as runs accumulate. This relation could perhaps arise
due to the fact that there is also an increase in the number of guesses reduces the precision due
to the denominator increasing radically.

In the chart above, it becomes evident that the model understands two important properties
of knowledge graph constructions. The first one being the suggested data schema of the text
for the output. As shown in the chart, the model consistently predicts the structure of the
sentence so that our greedy parser is able to extract triplets from 93% of the text predictions.
Moreover, from this subset, the model successfully infers the correct vocabulary on 98 % of
the text predictions which demonstrates correct understanding of the task of Open Information
Extraction.

5.1.2 Configuration 2: Input Context with BenchIE

The model achieves peaks in precision at 0.15, in recall at 0.20 and in f1 at 0.164. The
model’s performance in terms of recall tends to increase with the dimensions of aggregated
runs, whereas the precision decreases as runs accumulate. For a counter-intuitive reasons, there
seems to be quite some strong variation for when the context prompt is built with BenchIE vs.
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Figure 5.2. Chart depicting GPT-3’s ability to generate structured text of knowledge graph
triplets. The key metrics include syntax accuracy and word in sentence accuracy.

Figure 5.3. Chart depicting GPT-3’s performance on the BenchIE benchmark. The key
metrics include precision, recall and f1 across the dimensions of aggregated runs.

ReOIE2016 dataset. This pattern seems to be the opposite of what should be expected as the
same dataset should have better results as shown with T5 fine-tuning in the following section.
Perhaps, this may be due to GPT-3’s strong variability in the response.

In the chart, it becomes evident that the model understands two important properties of
knowledge graph constructions. The first one being the suggested data schema of the text
for the output. As shown in the chart, the model consistently predicts the structure of the
sentence so that our greedy parser is able to extract triplets from 97% of the text predictions.
Moreover, from this subset, the model successfully infers the correct vocabulary on 98 % of
the text predictions which demonstrates correct understanding of the task of Open Information
Extraction. Although this is more or less consistent with the previous run, there seems to be
medium variance in terms of correct syntax using this specialised dataset.
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Figure 5.4. Chart depicting GPT-3’s ability to generate structured text of knowledge graph
triplets. The key metrics include syntax accuracy and word in sentence accuracy.

5.2 T5 Evaluation

5.2.1 Configuration 1: Fine-tuned with Re-OIE2016

The T5 model is able to extract relevant information from the sentences, and produces accurate
knowledge graph triplets based on the context. The results further confirm the hypothesis that
large language models are capable of generating knowledge graph triplets without the need
of a fixed schema. Moreover, the syntactical accuracy reaches .993 and the word in sentence
accuracy achieves .965 which adds further evidence that open information extraction can be
viewed as a sequence to sequence problem.

Figure 5.5. Chart depicting T5’s ability to generate structured text of knowledge graph
triplets. The key metrics include syntax accuracy and word in sentence accuracy. The
independent variable is the number of epochs the model is fine-tuned for.

It is important to note that in this experiment, the fine tuned model only contains 1 run
and it’s context is not primed. The results do not show a clear pattern in terms of precision.
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However, the recall seems to be progressively increasing up until epoch 13 which boosts the f1
score from .17 to .25.

To further clarify the relation between number of fine-tuning epochs and number of runs
included in the model a 3D grid-search is established to measure the precision, recall and f1
scores respectively. By using the dataset of ReOIE2016 to train and BenchIE to evaluate, the
precision, recall and f1 peak at respectively the 3rd epoch with 1 run, 14th epoch with 3 runs and
10th epoch with 2 runs. It appears that precision decreases with the number of epochs whereas
recall increases until the 14th epoch. On the contrary, the recall has positive correlation and
the precision negative correlation with the number of runs included.

Figure 5.6. Chart depicting the key performance metrics of the T5 base model on the
BenchIE benchmark. The independent variable is the number of epochs the model is fine-
tuned for.

Figure 5.7. T-5 Base Model Fine-Tuned on Re-OIE2016 and evaluated on BenchIE bench-
mark. The charts show the performance in terms of precision, recall and f1 respectively.
The independent variables are numbers of runs on the x axis and number of epochs on the
y axis.
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5.2.2 Configuration 2: Fine-tuned with BenchIE

As it is clear that the fine-tuned T5 model is capable of predicting structure text with the previous
configuration, the task is to optimise for the correct training hyper-parameters. By using the
BenchIE benchmark to train and predict, the metrics increase dramatically. The precision, recall
and f1 peak at respectively the 12th epoch with 1 run; 30th epoch with 4 runs; at both 17th
epoch with 01 runs and 11th epoch with 2 runs . Once again, the recall has positive correlation
and the precision negative correlation with the number of runs included. Both the precision
and recall in this case benefit from being fine-tuned with the f1 being the two.

Figure 5.8. T-5 Base Model Fine-Tuned on BenchIE and evaluated on BenchIE benchmark.
The charts show the performance in terms of precision, recall and f1 respectively. The
independent variables are numbers of runs on the x axis and number of epochs on the y
axis.
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5.3 Interactive Visualisation Dashboard

With complex tasks in natural language processing, the qualitative analysis sometimes reveals
insights beyond the capabilities of quantitative evaluation. A specialised dashboard was im-
plemented to explore specific predicted sentence identifiers for a given experimental model as
well as an overview into the current dataset structure. This allows for a qualitative evaluation
on a finer-grained level, providing interesting insights into the behaviour of the current system.
The dashboard is built using vis.js javascript library and can be hosted on a server as an html
file with CDNs which interprets the results from a Javascript Object Notation (json) file. The
visualiser can be found in the thesis GitHub repository under the visualiser directory 1.

Figure 5.9. Visualiser demonstrating a sentence and its respective knowledge graph origi-
nating from labelled datasets or generated by a model

1https://github.com/MikeDoes/thesis/tree/main/visualiser
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5.3.1 Qualitative Analysis 1: BenchIE prediction using Re-OIE2016 as train-
ing set

BenchIE Golden Standard

To enhance our understanding of how the models predict, we are going to explore a specific
case in a qualitative manner. For instance, in the benchmark, the following sentence appears:

For example, a passenger can fly from Chardon, Neb. to Denver for as

little as $89 to $109, according to prices quoted by the company.

Since the BenchIE benchmark focuses on being fact-based as opposed to grammatical, the are
eight fact synsets (triplets) consisting seven unique relations and nine unique entities Gash-
teovski et al. [2021]. The central head entity in the sentence is "[a] passenger" connecting to
seven tails. We notice that the determinant of the passenger [a] is optional in the template.
This is of great importance as it shows the advances in the flexibility of the framework which
allows it to comprehend multiple variation of the same fact as in this case the determinant is
entropical.

Figure 5.10. Visualiser demonstrating a sentence and its respective knowledge graph in the
dataset of BenchIE
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However, when we look at the numerical facts extracted from the sentence, we noticed that
there are two separate facts for the price which is presented as a range "$89 to $109". In this
approach, the interpretation can be ambiguous. Primarily, the reader can be lead to believe that
the price of the ticket ranges from minimum $89 to maximum $109 which is little in the cost.
On the other side, the reader could be led to believe that the minimum price could be either
$89 or $109 depending on an external factor provided by the company. The issue with this
interpretation is that the facts can either be separated as a single or as a dual fact. By creating
a dataset with only the dual variation of the fact could diminish the evaluation of the models.

As a second note regarding the facts relating to the company entity. We notice that the
fact of prices being quoted by the company appears in three separate triplet. Specifically, these
synsets are:

prices --> quoted by --> [the] company

[a] passenger --> can fly according to --> prices quoted by [the] company

[a] passenger --> can fly according to prices quoted by --> [the] company

It becomes evident, that the facts and entities are repetitive and thus skewing the quan-
titative metrics which need to become more consistent. Moreover, although guidelines are
provided, the variations available in the knowledge graph representation seem to still vary as
there are multiple ways to phrase facts. Although using multiple exhaustive variations of the
similar fact synsets is the best approach that researchers have come across in terms of evaluating
knowledge graphs, there is still risk that some data may have ambiguous interpretations.
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T5 Prediction with BenchIE fine-tuning

In the following dashboard, we notice T5 doing a prediction which contains five entity nodes
connected with all the same relation. It is worthy to note that these entities are much more
concise as demonstrated by the length of words. Moreover, it is clear that the neural network
demonstrates some understanding in the differentiation of the various entities as each one
represents something meaningful in the sentence. To further improve the results, it would be
a good direction to increase the frequency or repetition penalty as it might mitigate the risk of
having the same relation repeated.

Figure 5.11. Visualiser demonstrating a sentence and the knowledge graph prediction by
the fine-tunned T5 model on BenchIE training dataset

Going back to our previous qualitative analysis, the fine-tuned T5 model Raffel et al. [2019]
interprets the "as little as $89 to $109" as one entity as opposed to the gold standard dataset
which views it as two separate price entities. Perhaps, in future iterations of the experiment,
it would be possible to limit the vocabulary to help straighten these ambiguities and improve
multi-relational understanding in concise and clear manner for downstream applications of
knowledge graphs.
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GPT-3 Prediction with BenchIE context

GPT-3 employed an approach without fine-tuning and learned the knowledge graph text-to-text
construction pattern simply with a few example in its context window. In this case, we notice
that the graph contains six entity nodes connect via four relations meaning that the results are
built of two separate graph components.

Figure 5.12. Visualiser demonstrating a sentence and the knowledge graph prediction by
the fine-tunned GPT3 model

Although this can occur naturally in the prediction, the specific instance is due to the union
of two forward runs. It can be seen that the first component seems to have straight forward
and minimalist entities with more verbose relations. On the other hand, the secondary compo-
nent appears to have more verbose entities and relations. Depending on the style of how the
golden knowledge graph is constructed, there can be changes in how it will be evaluated for
metrics such as accuracy, f1 and recall which shows the difficulty of evaluating the quality of a
knowledge graph.
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5.3.2 Qualitative Analysis 2: BenchIE test prediction using BenchIE as
training set

To have a better grasp of how the models creates prediction, we will investigate a specific
scenario in a qualitative approach. In the benchmark, for example, the following statement
appears:

Mr. Mulford said reports of tension between the Treasury and Fed have been exaggerated ,

insisting that they involved ‘‘ nuances . ’’

BenchIE Golden Standard

In the annotations, the knowledge graph is displayed using two graph components. The first
one containing two entities connected via a single relation and the second component with
three entities connected with two relations. However, it is clear that there is a slight mismatch
as there are two of the nodes representing the same entity but this is due to the fact that there
are many templates and that the visualiser needs to take not the first fact from the BenchIE
cluster, but rather the ones that minimise the number of entities in the chart.

Figure 5.13. Visualiser demonstrating a sentence and its respective knowledge graph in the
dataset of BenchIE



49 5.3 Interactive Visualisation Dashboard

GPT-3 Prediction with BenchIE context

In the aforementioned run, GPT-3 generates two sets of facts similar to the annotation. The first
set of facts being about what ’Mr. Mulford said’ and the second about the ’nuances’ which is very
similar to what the benchmark has as the golden triplet. Regarding the first knowledge graph
component, the part of nuances is not included in the prediction although it is still accepted in
thanks to templating aspect of BenchIE.

For the secondary graph component, stating the involvement of ’nuances’ we can see that
there is multiple ways within the sentence to refer to the same entity. According to the bench-
mark however, only one of them is accepted for estimating the precision metric.

Figure 5.14. Visualiser demonstrating a sentence and the knowledge graph prediction by
the fine-tunned GPT3 model with BenchIE as a context filler
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GPT-3 Prediction with Re-OIE2016 context

In this prediction, only a single graph component is predicted. Three of the four relations focus
on the word ’said’ and the fourth one on insisting. Two of them focus on what was said and the
other two on the nuances regarding the tensions. In this interpretation of the facts, we see that
it is much more difficult to understand the situation using the knowledge graph thus the task
should perhaps pre-filter on given sentences that are facts rather than quotations. For instance,
the question of objectivity arises again. In other words, by including the information that the
reports were exaggerated might violate the freedom from bias as these statements could be
viewed as objective which makes it confusing for the language model. Moreover, it appears that
the predicted triplets are much more verbose with the context being filled using RE-OIE2016 as
contrasted with the subset of BenchIE. This can be proved quantitatively as the average word
lengths in a given entity are 2.83 and 5.6 with BenchIE and RE-OIE2016 respectively.

Figure 5.15. Visualiser demonstrating a sentence and the knowledge graph prediction by
the fine-tunned GPT3 model with reoie2016 as a context filler
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T5 Prediction with BenchIE fine-tuning

Although the T5 predictions scored the best in terms of metrics, for this given sentence, they
under-perform. Despite the main two entities of ’nuances’ and ’Mr. Mulford’ are extracted, the
relations include to many words which renders them lengthy with some of them appearing to
be as long as 14 words. Moreover, it appears that the model is confused as to which facts to
extract and tries to come to terms by increasing the words in the entities and relations.

Figure 5.16. Visualiser demonstrating a sentence and the knowledge graph prediction by
the fine-tunned T5 model with BenchIE training set
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5.4 Summary

In the first set of results, the hypothesis of large language models being capable of predicting
the correct syntax is shown to have strong supportive evidence. With the syntax and word
accuracies of both language models always being above 94%. Moreover, despite to the lack of
high quality data originating from the same source, the training set for the fine-tuning of the
results matches the performance of some of the most recent OpenIE6 extractor in terms of f1
and some configuration outperform it in precision and recall. However, the well established
algorithmic approach of ClauseIE still outperforms the large language model.

Model Precision Recall F1 Syntax Accuracy Word Accuracy

EXPERIMENTAL

GPT3 0.262 0.242 0.213 0.986 0.94
T5− Base 0.432 0.215 0.254 0.965 0.993

CONTROL

ClauseI E 0.503 0.256 0.339 - -
MinI E 0.429 0.277 0.337 - -
OpenI E6 0.311 0.214 0.254 - -

Table 5.1. Performance of the best models runs for the task of knowledge graph generation
for the entirety of the BenchIE dataset. The context of GPT3 and the fine-tuning dataset
of T5 filled with ReOIE2016 triplets.

On the second set of experiments, the fine-tuning and context include subsets of the same
dataset whilst making sure that there is no overlap between training and testing dataset. With
the training and testing dataset originating from the same place, the results for the task of
knowledge graph construction using large language models produces highly promising results.
For instance, the T5-Base model performs the best out of all selected models in terms of recall
but fails to produce the best recall and thus f1 scores as the algorithmic approach still displays
the best overall performance.

Model Precision Recall F1

EXPERIMENTAL

GPT3 (c = Re) 0.167 0.185 0.175
T5 ( f = Re) 0.296 0.152 0.202
GPT3 (c = Be) 0.146 0.204 0.137
T5 ( f = Be) 0.460 0.389 0.351

CONTROL

ClauseI E 0.579 0.350 0.437
MinI E 0.404 0.293 0.339
OpenI E6 0.319 0.229 0.267

Table 5.2. Performance of the best models runs for the task of knowledge graph generation
for the last 40 sentences BenchIE dataset. The context (c=) of GPT3 and the fine-tuning
(f=) dataset of T5 filled with ReOIE2016 (Re) or non-testing BenchIE (Be) dataset.
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Finally, we extend the knowledge graph construction task to also be analysed in a qualitative
manner using the dashboard. By displaying both the sentence and the knowledge graph at
the same time. Using this approach, we determined various peculiarities in both the model
predictions and datasets.
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Chapter 6

Discussion

To conclude the thesis, we would like to review the main contributions, limitations and possible
extension for further research work.

6.1 Contribution

In this work, we aimed to progress the research of the creation of knowledge graphs using
language models in two practical implementations and four different configurations.

The first aspect revolves around creating the preliminary tools to be able to visualise and con-
vert various datasets for knowledge graphs. At this end, we created a standard data-structure
which has converter function from and to the standard and towards the specific formats en-
abling transformations across formats. This data-structure format hub minimises the number
of transformations required for a knowledge graph to be transformed to a given format em-
ployed in modern literature. Moreover, to gain a deeper qualitative understanding of the data,
a web-based knowledge graph application was created to visualise triplet lists with their corre-
sponding sentences accessible via modern browsers wether it be on mobile or desktop devices.
This visualisers can help understand the quality of original datasets, model predictions, pre and
post-processing steps.

In the second part of the contribution, we aimed to use a large language model to generate
knowledge graphs. In this manner, we implemented two custom pipelines to best leverage the
potential of language. The first type of model focuses on GPT-3’s ability to predict using few-shot
behaviour Brown et al. [2020] by providing it a few example then letting it fill the prediction.
This approach is almost fully unsupervised as the required training data is substantially low
(below 10 examples)

The second type of model focuses on the fine-tuning abilities of the T5-Base model which
requires much more high quality supervised data Raffel et al. [2019].
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Although both showed high accuracies in terms of following the task syntax, the fine-tuned
model shows promising competitive results in generating knowledge graphs for the most se-
mantic open information extraction benchmark, BenchIE Gashteovski et al. [2021].

6.2 Limitations

Despite the best of our efforts, it is evident that as with all scientific endeavours, there are
limitation in our study. For instance, due to the lack of hardware and time capacity, we used
the base only size of the model. The two larger sizes of the models for the fine-tuning of T5
were not implemented which has strong potential to achieve competitive results including state
of the art on the benchmark of BenchIE.

6.3 Further Work

In future research, it would be great to develop more advanced parsers, analytics, shifting
vocabularies among the language models which generate knowledge graphs.

Specifically, advanced parsers would enable to develop higher accuracies in the benchmarks.
Currently the pre-processing parser creates a input text given a template. Despite informal
internal studies, it would be to do an analysis on what kind of sentence prefix, triplet list prefix,
fact separation token and argument separation token maximise the clarity of the model.

As knowledge graph generation is a composite task, many more metrics could be extracted
beyond syntax metrics, accuracy, f1 and recall. To further increase analytics, it would be im-
portant to see wether the model has learned to generate triplets in a logical order.

Finally, another benefit of the approach introduced in thesis is that it would be possible to
adapt the vocabulary towards a specific downstream application rather than the source text.
Moreover, the model would be able to extract meaningful triplets from the text which are not
part of the training set enabling it to merge the sentence knowledge graph with a larger knowl-
edge graph structure. This could have much larger implications in the field of search engines.

For instance, it could create a knowledge graph vocabulary custom to each user enabling
the learning and communication experience to be of much higher quality. Namely, as Google
search engine application employed knowledge graphs 400 billion times just in 2016 Goo.



57 6.4 Conclusion

6.4 Conclusion

In this work, we have proposed a novel model for Open Information Extraction from unstruc-
tured text. Our model leverages the advantages of a text-to-text model, namely the ability to
use large language models with or without fine-tuning, while also being capable of learning the
structure of the sentence. We have evaluated our model on a standard OIE dataset, BenchIE,
demonstrating competitive results and a strong potential for better generalization. We believe
that the proposed model can serve as a valuable tool in building knowledge graphs from text.
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